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It is shown that the Gauss method of least squares can be generalized to a method
of integer powers of quadratic functions, when choosing a cost function to
optimize active noise reduction systems using transfer functions.

Consider a set of N loudspeakers or anti-noise sources, with output spectra
pn (v) with n=1, . . . , N, attempting to cancel a background noise ra (v) with the
total sound field being monitored at M microphones, which have output spectra
qa (v), with a=1, . . . , M, where the N×M matrix of transfer functions Tan

between loudspeakers and microphones is assumed to be known:

a=1, . . . , M: qa (v)= s
N

n=1

Tan (v)pn (v)+ ra (v). (1)

The usual choice of the cost function is the total acoustic power at the
microphones:

E(v)= s
M

a=1

=qa (v)=2 = s
M

a=1

qa (v)q*a (v), (2)

where an asterisk denotes the complex conjugate. The objective is to choose the
ouputs of the loudspeakers p1(v), . . . ,pN (v) so as to minimize the total acoustic
power; this corresponds to the Gauss method of least squares. The Gauss method
can be generalized to a method of least even powers by choosing as a cost function
any integral power k of the acoustic power,

F(v)0 {E(v)}k =6 s
M

a=1

qa (v)q*a (v)7
k

. (3)

From equation (3) it follows that:

dF= kEk−1 dE, d2F= kEk−1 d2E+ k(k−1)Ek−2(dE)2, (4a, b)

so that the condition of minimum energy:

dE=0, d2Eq 0, (5a, b)
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is equivalent to the condition of minimum cost function

ke 2: dF=0, d2Fq 0, (6a, b)

for any ke 2. Thus, the Gauss method of least squares (2) or the use as cost
function of an integer power of a quadratic (3), gives exactly the same result.

The condition of stationary cost function, in either form (5a) or (6a), leads to:

0= 1E/1pn = s
M

a=1

q*a 1qa /1pn = s
M

a=1

Tan0 s
N

m=1

T*amp*m + r*a 1, (7)

which can be solved to specify (8a) the input to the loudspeakers:

pn =− s
N

n=1

s
M

a=1

A−1
nm Tamra , Anm 0 s

M

a=1

Tan T*am , (8a, b)

where A−1
nm is the inverse of the matrix (8b). In order to prove that (8a) is indeed

the optimal input, which minimizes the cost function (2) or (3), it is sufficient to
prove (5b) or (6b), starting with:

d2E= s
N

n,m=1

(12E/1pndp*m ) dpn dp*m , (9)

and using equation (1):

12E/1pn1p*m = s
M

a=1

(1qa /1pn)(1q*a /1p*m )= s
M

a=1

TanT*am . (10)

It follows that:

d2E= s
M

a=1

s
N

n · m=1

TandpnT*amdp*m = s
M

a=1 b s
N

n=1

Tandpnb
2

q 0, (11)

so that the extremum (5a, 6a) is actually a minimum (5b, 6b). In conclusion,
when considering an active noise reduction system, using M monitoring
microphones of outputs qa (v), and N loudspeaker inputs pn (v), to minimize the
residual noise ra (v), with known transfer functions Tan (v) between loudspeakers
and microphones, the optimum input is (8a), in the sense that it minimizes (6a, b)
the cost function (3) for all powers k, of which the Gauss least squares method
corresponds to the case k=1. The question may be raised of what is the advantage
of using k$ 1, i.e., a cost function other than the Gaussian, since the same
minimum is obtained for any k. As an example consider a practical situation, in
which a minimum is sought numerically, and it is shallow. The use of a larger
exponent k may render the minimum more noticeable, by making it less shallow
and thus easier to locate accurately by a numerical procedure.


